A Regularization Method for Time-fractional Linear Inverse Diffusion Problems
نویسندگان
چکیده
In this article, we consider an inverse problem for a time-fractional diffusion equation with a linear source in a one-dimensional semi-infinite domain. Such a problem is obtained from the classical diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative. We show that the problem is ill-posed, then apply a regularization method to solve it based on the solution in the frequency domain. Convergence estimates are presented under the a priori bound assumptions for the exact solution. We also provide a numerical example to illustrate our results.
منابع مشابه
Implementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملSimultaneous Inversion for Space-Dependent Diffusion Coefficient and Source Magnitude in the Time Fractional Diffusion Equation
We deal with an inverse problem of simultaneously identifying the space-dependent diffusion coefficient and the source magnitude in the time fractional diffusion equation from viewpoint of numerics. Such simultaneous inversion problem is often of severe ill-posedness as compared with that of determining a single coefficient function. The forward problem is solved by employing an implicit finite...
متن کاملOptimal results for a time-fractional inverse diffusion problem under the Hölder type source condition
In the present paper we consider a time-fractional inverse diffusion problem, where data is given at $x=1$ and the solution is required in the interval $0
متن کاملLandweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation
In this paper, we investigate an inverse problem to determine an unknown source term that has a separable-variable form in the time-fractional diffusion equation, whereby the data is obtained at a certain time. This problem is ill-posed, and we use the Landweber iterative regularization method to solve this inverse source problem. Two kinds of convergence rates are obtained by using an a priori...
متن کامل